<<
>>

Непрерывные проценты

Связь дискретных и непрерывных процентных ставок

Дискретные и непрерывные процентные ставки находятся в функциональной зависимости, благодаря которой можно осуществлять переход от расчета непрерывных процентов к дискретным и наоборот.

Формулу эквивалентного перехода от одних ставок к другим можно получить путем приравнивания соответствующих множителей наращения

(1+i)n=eSn.

Из записанного равенства следует, что

Пример 13.

Годовая ставка сложных процентов равна 15%, чему равна эквивалентная сила роста,

Решение.

Воспользуемся формулой (50)

д=Ы(1+^=Ы(1+0,15)=0,т76,

т.е. эквивалентная сила роста равна 13,976%.

Расчет срока ссуды и процентных ставок

В ряде практических задач начальная (Р) и конечная (Б) суммы заданы контрактом, и требуется определить либо срок платежа, либо процентную ставку, которая в данном случае может служить мерой сравнения с рыночными показателями и характеристикой доходности операции для кредитора. Указанные величины нетрудно найти из исходных формул наращения или дисконтирования.

По сути дела, в обоих случаях решается в известном смысле обратная задача.

Срок ссуды

При разработке параметров соглашения и оценивании сроков достижения желательного результата требуется определить продолжительность операции (срока ссуды) через остальные параметры сделки. Рассмотрим этот вопрос подробнее.

А) При наращивании по сложной годовой ставке i. Из исходной формулы наращения

5=P(1+i)n

следует, что

п = 1ои(Б / Р) (52)

1оё(1 +1) ’

где логарифм можно взять по любому основанию, поскольку он имеется как в числителе, так и в знаменателе.

Б) При наращивании по номинальной ставке процентов т раз в году из формулы

5=P(1+j/m)mn

получаем

п =

т іо§(1 + у I т)

В) При дисконтировании по сложной годовой учетной ставке d.

Из формулы

P=S(1d)n

имеем п = 1оё(Р 15). (54)

1оё(1 – ^

Г) При дисконтировании по номинальной учетной ставке m раз в году. Из

P=S(1f/m)mn

приходим к формуле

п = 1о8(Р 15). (55)

т 1о§(1 – /1 т)

При наращивании по постоянной силе роста. Исходя из

Б=Рв3п

получаем

іп(Б/Р)=Ьп.

Расчет процентных ставок

Из тех же исходных формул, что и выше, получим выражения для процентных ставок.

А) При наращивании по сложной годовой ставке I. Из исходной формулы наращения

Б=Р(1+1)п

следует, что

"'і.'1

Б) При наращивании по номинальной ставке процентов т раз в году из формулы

Б=Р(1+]/т)тп

В) При дисконтировании по сложной годовой учетной ставке й. Из формулы

Р=Б(1й)п

имеем ё = 1 – (§). (59)

Г) При дисконтировании по номинальной учетной ставке т раз в году. Из

Р=Б(1//т)тп

приходим к формуле

1 /(тп)

Д) При наращивании по постоянной силе роста. Исходя из

получаем

Начисление процентов и инфляция

Следствием инфляции является падение покупательной способности денег, которое за период П характеризуется индексом Jn. Индекс покупательной способности равен обратной величине индекса цен Jp, т.е.

Jn 1/Jp¦

Индекс цен показывает во сколько раз выросли цены за указанный промежуток времени.

Наращение по простым процентам

Если наращенная за п лет сумма денег составляет S, а индекс цен равен Jp, то реально наращенная сумма денег, с учетом их покупательной способности, равна

C=S/Jp.

Пусть ожидаемый средний годовой темп инфляции (характеризующий прирост цен за год) равен Ь. Тогда годовой индекс цен составит (1+Ь.).

Если наращение производится по простой ставке в течение П лет, то реальное наращение при темпе инфляции Ь составит

с = р (1 + Ш)

где в общем случае

п

JP =П (1+К),

г=1

и, в частности, при неизменном темпе роста цен h,

Jp=(1+h)n. (66)

Процентная ставка, которая при начислении простых процентов компенсирует инфляцию, равна

71

і =Р1.

(67)

п

Один из способов компенсации обесценения денег заключается в увеличении ставки процентов на величину так называемой инфляционной премии. Скорректированная таким образом ставка называется бруттоставкой. Бруттоставка, которую мы будем обозначать символом Г, находится из равенства скорректированного на инфляцию множителя наращения по бруттоставке множителю наращения по реальной ставке процента

1+пг = 1 + пі, (68)

откуда

г = (1 + ті)Р 1. (69)

п

Наращение по сложным процентам

Наращенная по сложным процентам сумма к концу срока ссуды с учетом падения покупательной способности денег (т.е. в неизменных рублях) составит

С = Р (1+01, (70)

где индекс цен определяется выражением (65) или (66), в зависимости от непостоянства или постоянства темпа инфляции.

В этом случае падение покупательной способности денег компенсируется при ставке i=h, обеспечивающей равенство C=P.

Применяются два способа компенсации потерь от снижения покупательной способности денег при начислении сложных процентов.

А) Корректировка ставки процентов, по которой производится наращение, на величину инфляционной премии. Ставка процентов, увеличенная на величину инфляционной премии, называется бруттоставкой. Будем обозначать ее символом г. Считая, что годовой темп инфляции равен Ь можем написать равенство соответствующих множителей наращения

— = 1 + /, (71)

1 + И

где і – реальная ставка.

Отсюда получаем формулу Фишера

r=i+h+ih. (72)

То есть инфляционная премия равна h+ih.

Б) Индексация первоначальной суммы P. В этом случае сумма P корректируется согласно движению заранее оговоренного индекса. Тогда

S=PJp(1+i)n. (73)

Нетрудно заметить, что и в случае А) и в случае Б) в итоге мы приходим к одной и той же формуле наращения (73). В ней первые два сомножителя в правой части отражают индексацию первоначальной суммы, а последние два – корректировку ставки процента.

Измерение реальной ставки процента

На практике приходится решать и обратную задачу – находить реальную ставку процента в условиях инфляции.

Из тех же соотношений между множителями наращения нетрудно вывести формулы, определяющие реальную ставку і по заданной (или объявленной) бруттоставке г.

При начислении простых процентов годовая реальная ставка процентов равна

(л \

1 + пг

1

•р

При начислении сложных процентов реальная ставка процентов определяется следующим выражением

1 + Г Г – И /ГГГЧ

I = 1 =. (75)

1+И 1+И

Практические приложения теории

Рассмотрим некоторые практические приложения рассмотренной нами теории. Покажем как полученные выше формулы применяются при решении реальных задач по расчету эффективности некоторых финансовых операций, сравним различные методы расчетов.

Конвертация валюты и начисление процентов

Рассмотрим совмещение конвертации (обмена) валюты и наращение простых процентов, сравним результаты от непосредственного размещения имеющихся денежных средств в депозиты или после предварительного обмена на другую валюту. Всего возможно 4 варианта наращения процентов:

1. Без конвертации. Валютные средства размещаются в качестве валютного депозита, наращение первоначальной суммы производится по валютной ставке путем прямого применения формулы простых процентов.

2. С конвертацией. Исходные валютные средства конвертируются в рубли, наращение идет по рублевой ставке, в конце операции рублевая сумма конвертируется обратно в исходную валюту.

3. Без конвертации. Рублевая сумма размещается в виде рублевого депозита, на который начисляются проценты по рублевой ставке по формуле простых процентов.

4. С конвертацией. Рублевая сумма конвертируется в какуюлибо конкретную валюту, которая инвестируется в валютный депозит. Проценты начисляются по валютной ставке. Наращенная сумма в конце операции обратно конвертируется в рубли.?

Операции без конвертации не представляют сложности. В операции наращения с двойной конвертацией имеются два источника дохода: начисление процента и изменение курса. Причем начисление процента является безусловным источником (ставка фиксирована, инфляцию пока не рассматриваем). Изменение же обменного курса может быть как в ту, так и в другую сторону, и оно может быть как источником дополнительного дохода, так и приводить к потерям. Далее мы конкретно остановимся на двух вариантах (2 и 4), предусматривающих двойную конвертацию.

Предварительно введем следующие ОБОЗНАЧЕНИЯ:

Pv – сумма депозита в валюте,

Pr – сумма депозита в рублях,

Sv – наращенная сумма в валюте,

Sr – наращенная сумма в рублях,

^ – курс обмена в начале операции (курс валюты в руб.)

^ – курс обмена в конце операции, П – срок депозита,

І – ставка наращения для рублевых сумм (в виде десятичной дроби),

j – ставка наращения для конкретной валюты.

ВАРИАНТ: ВАЛЮТАМ РУБЛИ ^ РУБЛИ ^ВАЛЮТА Операция состоит из трех этапов: обмена валюты на рубли, наращения рублевой суммы, обратное конвертирование рублевой суммы в исходную валюту. Наращенная сумма, получаемая в конце операции в валюте, составит

= РуК— (1 + пі)!.

к1

Как видим, три этапа операции нашли свое отражение в этой формуле в виде трех сомножителей.

Множитель наращения с учетом двойной конвертации равен

К0 „,ч 1 + пі 1 + пі,

к

К о

где k=Kl/Ko – темп роста обменного курса за срок операции.?

Мы видим, что множитель наращения т связан линейной зависимостью со ставкой I и обратной с обменным курсом в конце операции К (или с темпом роста обменного курса к).

Исследуем теоретически зависимость общей доходности операции с двойной конвертацией по схеме ВАЛЮТА ^ РУБЛИ ^ РУБЛИ ^ ВАЛЮТА от соотношения конечного и начального курсов обмена к.

Простая годовая ставка процентов, характеризующая доходность операции в целом, равна

/ = ^Р,.

*,')ТМТМ

* Рп

Подставим в эту формулу записанное ранее выражение для Бу

—(1 + т)1

К1 1 (1 + т) 1?

ВЫВОД 1: Если ожидаемые величины k или K1 превышают свои критические значения, то операция явно убыточна

Цэфф<0').

Теперь определим максимально допустимое значение курса обмена в конце операции Ki, при котором эффективность будет равна существующей ставке по депозитам в валюте, и применение двойной конвертации не дает никакой дополнительной выгоды. Для этого приравняем множители наращения для двух альтернативных операций

к

1 + nj =тт(1 + ni) •

K1

Из записанного равенства следует, что

к к 1 + ni

max K1 = K 0

1 + nj

или

K, 1 + ni

max k = —L =

K о 1 + nj

ВЫВОД 2: Депозит валюты через конвертацию в рубли выгоднее валютного депозита, если обменный курс в конце операции ожидается меньше max K1.

ВАРИАНТ: РУБЛИ ^ ВАЛЮТА ^ ВАЛЮТА ^ РУБЛИ

Рассмотрим теперь вариант с двойной конвертацией, когда имеется исходная сумма в рублях. В этом случае трем этапам операции соответствуют три сомножителя следующего выражения для наращенной суммы

P K

S = K(1 + nj)K 1= Pr (1 + nj)L •

K0 K0

Здесь также множитель наращения линейно зависит от ставки, но теперь от валютной ставки процентов. От конечного курса обмена он также зависит линейно.

Проведем теоретический анализ эффективности этой операции с двойной конвертацией и определим критические точки.?

Доходность операции в целом определяется по формуле

«¦ =.

1 „тмгм „

Э Ргп

Отсюда, подставив выражение для Sr, получаем

К

(1 + п])1. = Ко ' = *(1 + п])1

'Э11

п

Зависимость показателя эффективности iэфф от k линейная, она представлена на рис. 3

При k=1 ізфф=/', при к>1 ізфф>;', при к<1 ізфф^.

Найдем теперь критическое значение к*, при котором Ьфф=0. Оно оказывается равным

к* =^^ или к *1 =К^~.

1 + п 1 + п

ВЫВОД 3: Если ожидаемые величины к или ^ меньше своих критических значений, то операция явно убыточна

(ІЗФФ<0).

Минимально допустимая величина к (темпа роста валютного курса за весь срок операции), обеспечивающая такую же доходность, что и прямой вклад в рублях, определяется пу

тем приравнивания множителеи наращения для альтернативных операций (или из равенства iэфф=i)

к

— L(1 + nj) = 1 + ni,

K 0

1 + ni 1 + ni откуда mm k = или mm к = K •

1 + nj 1 0 1 + nj

ВЫВОД 4: Депозит рублевых сумм через конвертацию в валюту выгоднее рублевого депозита, если обменный курс в конце операции ожидается больше min K1.

Теперь рассмотрим совмещение конвертации валюты и наращение сложных процентов. Ограничимся одним вариантом.

ВАРИАНТ: ВАЛЮТА ^ РУБЛИ ^ РУБЛИ ^ ВАЛЮТА

Три этапа операции записываются в одной формуле для наращенной суммы

sv = PVK 0(1+i) nK'

Ki

где i – ставка сложных процентов.

Множитель наращения

nKо _ (1 +i) n

K1 k

7 К

где к = —– темп роста валютного курса за период операции. К 0

Определим доходность операции в целом в виде годовой ставки сложных процентов iэ.

Из формулы наращения по сложным процентам

S=P(1+i)n

следует, что

I. — n

]Pv

Подставив в эту формулу значение БУ, получим

Р (1 + Опгг,.

ь = д, ^1 = 1+11.

Из этого выражения видно, что с увеличением темпа роста к эффективность ь падает. Это показано на графике рис. 4.

Рис. 4.

Анализ показывает, что при к = 1 1э = I, при к > 1 1э < I, а при к < 11э > I.

Критическое значение к, при котором эффективность операции равна нулю, т.е. ь = 0,

определяется как к* = (1 + 1)п, что означает равенство среднегодового темпа роста курса валюты годовому темпу наращения по рублевой ставке: Vк = 1 + г.

ВЫВОД 5: Если ожидаемые величины к или К больше своих критических значений, то рассматриваемая операция с двойной конвертацией явно убыточна (ь < 0).

Максимально допустимое значение к, при котором доходность операции будет равна доходности при прямом инвестировании валютных средств по ставке ] (т. а на рис. 4), находится из равенства соответствующих множителей наращения

(1 +1)я

(1 + Л)п =

кт?

откуда

п

1 +1

или max к = К

1 Л(

1 +У, 1 "VI + у,

ВЫВОД 6: Депозит валюты через конвертацию в рубли выгоднее валютного депозита, если обменный курс в конце операции ожидается меньше тах

Погашение задолженности частями Контур финансовой операции

Финансовая или кредитная операции предполагают сбалансированность вложений и отдачи. Понятие сбалансированности можно пояснить на графике. а)

В

Я,.

Т

б)

Рис. 5.

Пусть ссуда в размере Бо выдана на срок Т. На протяжении этого срока в счет погашения задолженности производятся, допустим, два промежуточных платежа К и Кг, а в конце срока выплачивается остаток задолженности К3, подводящий баланс операции.

На интервале времени й задолженность возрастает до величины Бъ В момент и долг уменьшается до величины К1=Б1К1 и т.д. Заканчивается операция получением кредитором остатка задолженности Кз. В этот момент задолженность полностью погашается.

Назовем график типа б) контуром финансовой операции. Сбалансированная операция обязательно имеет замкнутый контур, т.е. последняя выплата полностью покрывает остаток задолженности. Контур операции обычно применяется при погашении задолженности частичными промежуточными платежами.

С помощью последовательных частичных платежей иногда погашаются краткосрочные обязательства. В этом случае существуют два метода расчета процентов и определения остатка задолженности. Первый называется актуарным и применяется в основном в операциях со сроком более года. Второй метод назван правилом торговца. Он обычно применяется коммерческими фирмами в сделках со сроком не более года.

Замечание: При начислении процентов, как правило, используются обыкновенные проценты с приближенным числом дней временных периодов.

Актуарный метод

Актуарный метод предполагает последовательное начисление процентов на фактические суммы долга. Частичный платеж идет в первую очередь на погашение процентов, начисленных на дату платежа. Если величина платежа превышает сумму начисленных процентов, то разница идет на погашение основной суммы долга. Непогашенный остаток долга служит базой для начисления процентов за следующий период и т.д. Если же частичный платеж меньше начисленных

процентов, то никакие зачеты в сумме долга не делаются. Такое поступление приплюсовывается к следующему платежу.

Для случая, показанного на рис. 5 б), получим следующие расчетные формулы для определения остатка задолженности:

К1=Во(1+Ьь1)К1; К2=Кь(1+Ь21)К2; К2(1+Ьз1)Кз=0,

где периоды времени Ьь, Ь2, Ьз – заданы в годах, а процентная ставка I – годовая.

Правило торговца

Правило торговца является другим подходом к расчету частичных платежей. Здесь возможны две ситуации.

1) Если срок ссуды не превышает, сумма долга с начисленными за весь срок процентами остается неизменной до полного погашения. Одновременно идет накопление частичных платежей с начисленными на них до конца срока процентами.

2) В случае, когда срок превышает год, указанные выше расчеты, делаются для годового периода задолженности. В конце года из суммы задолженности вычитается наращенная сумма накопленных частичных платежей. Остаток погашается в следующем году.

При общем сроке ссуды Т<1 алгоритм можно записать следующим образом

m

S = D – K = P(l + Л) – ? RJ (1 + tJi),

]=1

где Э – остаток долга на конец срока,

В – наращенная сумма долга,

К – наращенная сумма платежей,

Щ – сумма частичного платежа,

Ь) – интервал времени от момента платежа до конца срока, т – число частичных (промежуточных) платежей.

Переменная сумма счета и расчет процентов

Рассмотрим ситуацию, когда в банке открыт сберегательный счет, и сумма счета в течение срока хранения изменяется: денежные средства снимаются, делаются дополнительные взносы. Тогда в банковской практике при расчете процентов часто используют методику расчета с вычислением так называемых процентных чисел. Каждый раз, когда сумма на счете изменяется, вычисляется процентное число Cj за прошедший период ], в течение которого сумма на счете оставалась неизменной, по формуле

с. = Р.,

у 100

где ^ – длительность ]го периода в днях.

Для определения суммы процентов, начисленной за весь срок, все процентные числа складываются и их сумма делится на постоянный делитель D:

В = К,

/

где K – временная база (число дней в году, т.е. 360 либо 365 или 366), i – годовая ставка простых процентов (в %).

При закрытии счета владелец получит сумму равную последнему значению суммы на счете плюс сумму процентов.

Пример 14.

Пусть 20 февраля был открыт счет до востребования в размере P1=3000 руб., процентная ставка по вкладу равнялась г=20% годовых. Дополнительный взнос на счет составил Rl=2000 руб. и был сделан 15 августа. Снятие со счета в размере R2=4000 руб. зафиксировано 1 октября, а 21 ноября счет был закрыт. Требуется определить сумму процентов и общую сумму, полученную вкладчиком при закрытии счета.

Решение.

Расчет будем вести по схеме (360/360). Здесь имеются три периода, в течение которых сумма на счете оставалась неизменной: с 20 февраля по 15 августа

^1 = 3000, и = 10 + 5*30 + 15 = 175),?

с 15 августа по 1 октября

(Р2 = Р1 + Я1 = 3000 + 2000 = 5000 руб., Ь = 15 + 30 + 1 = 46), с 1 октября по 21 ноября

(Рз = Р2 + Я2 = 5000 – 4000 = 1000 руб., Ьз = 29 + 21 = 50). Найдем процентные числа

Р*Д 3000 С. =—к = = 5250,

1 1ЛЛ 1лл

=2300,

Постоянный делитель

В=К/1=360/20=18.

Сумма процентов равна

I = (С, + С2 + С3)/ Б = 5250 + 2300 + 500 = 447 руб. 22 коп.

18

Сумма, выплачиваемая при закрытии счета, равна

Рз + I = 1000 + 447.22 = 1447 руб. 22 коп.

Теперь покажем связь этой методики с формулой простых процентов. Рассмотрим в алгебраическом виде представленный выше пример.

Сумму, выплачиваемую при закрытии счета, найдем следующим образом

РЛ, + (Р + О V 2 + (Р + Р. + 02 ^з /

Р3 +1 = Р + Я1 + Р2 +^—^ 1' 2 V 1 1 ^3 _

100 К

t1 +2 +13 I 1, о {,, 2 +13 I 1, о (л, t3 I

= Р.1 1 +1 2 ^ 1 + О 1 + ^ ^ 1 + Р2| 1 +31 ^ К 100) ^ К 100) ^ К100

Таким образом, мы получили выражение, из которого следует, что на каждую сумму, добавляемую или снимаемую

со счета, начисляются проценты с момента совершения соответствующей операции до закрытия счета. Эта схема соответствует правилу торговца, рассмотренному в разделе 6.2.

Изменение условий контракта

В практике часто возникает необходимость в изменении условий контракта: например, должник может попросить об отсрочке срока погашения долга или, напротив, изъявить желание погасить его досрочно, в ряде случаев может возникнуть потребность объединить (консолидировать) несколько долговых обязательств в одно и т.д. Во всех этих случаях применяется принцип финансовой эквивалентности старых (заменяемых) и новых (заменяющих) обязательств. Для решения задач по изменению условий контракта разрабатывается так называемое уравнение эквивалентности, в котором сумма заменяемых платежей, приведенных к какомулибо одному моменту времени, приравнивается сумме платежей по новому обязательству, приведенных к той же дате. Для краткосрочных контрактов применяются простые процентные ставки, а для среднеи долгосрочных – сложные ставки.

<< | >>
Источник: Ю.П. Лукашин. Финансовая математика. 2008

Еще по теме Непрерывные проценты:

  1. Эквивалентность непрерывно начисляемого процента и процента, начисляемого т раз в год
  2. Непрерывное начисление процента
  3. Сложный процент 3. 1. 2. 1. Начисление процента один раз в год Сложный процент — это процент, который начисляется на перво­начально инвестированную сумму и начисленные в предыдущие периоды проценты
  4. Непрерывность деятельности
  5. Непрерывный совет
  6. Оценка непрерывности деятельности
  7. Непрерывное обучение руководящих работников и специалистов
  8. Непрерывное обучение рабочих
  9. Непрерывное обучение
  10. Оценка допущения непрерывности деятельности аудируемого лица
  11. Непрерывность
  12. Применимость допущения непрерывности деятельности при проведении аудита
  13. Кадровый менеджмент как непрерывный процесс
  14. Проверка возможности применения допущения о непрерывности деятельности субъекта
  15. НЕПРЕРЫВНОЕ СОВЕРШЕНСТВОВАНИЕ
  16. Хедж непрерывный
  17. непрерывность деятельности
  18. сплошным и непрерывным